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We report a procedure that should enhance the use of enantio- O ~
selective 1,3-dipolar cycloadditions of azomethine ylidesth & OMe O N

electronic-deficient olefins in the divergent pathways of diversity- PPhy PPh,
oriented synthesis (DOS)The underlying reaction is of consider- NH PPhy {NH  PPhy O CO
able interest in DOS because its stereospecificity enables stereo- QNH Pphz QNH ppn,  (AYMOP(3) (S)-QUINAP (4)
chemical diversification of up to four tetrahedral centers on

pyrrolidine rings. ]\,P%
The biological importance of pyrrolidines has inspired the Pphz PPh,
development of diastereoselectiveHd] azomethine ylide cycload- (RA)-Trost ligand (1) (S,5)- NAPHTHYL @) (R-PHOX (5) (5.9)-DIOP (6)

ditions using chiral auxiliari€sand, recently by Zhang and co-  Figure 1. Chiral phosphine ligands screened for the azomethine ylide
workerd and Jgrgensen and co-workér®f enantioselective  cycloadditions.
variants using chiral catalystsBoth Zhang's silver(l)/xylyl-FAP

and Jgrgensen’s zinc(lBBUBOX systems give moderate to 0 1-3?'”;\;‘%'}‘)2033"’5 BuooC,

excellent levels of stereoselectivity with imines derived from methyl H o, MgS0a, CHCle ‘,,..O,,,,COOMe
glycinate?’ We describe a new catalyst system that extends the scope 2. Qggng(CS()) 8%'3&’; @ H 9

and selectivity of the azomethine ylide cycloaddition and is H%erEt THF, -45 °C 84% yield, 91% ee

compatible with reagents used in a one-bead/one-stock solution
technology platform for DOS.

Focusing on the silver(l)-catalyzed enantioselective cycloaddition Table 1. Exploration of the Reactivity of the Aromatic Moiety®
developed by Zhang and co-workers, we aimed to identify a

Figure 2. Silver(1)/(S9-QUINAP-catalyzed azomethine ylide cycloaddition.

X ‘ Oy_OMe FPNEt o oo
commercially available and general catalyst system capable of j/ o AgOAc
maximizing the number and directionality of pyrrolidine append- N . \/u\ (S-QUINAP 4) W 5

. . . . . . )L O'Bu N Ar™ ™\~ COOMe
ages. Six different chiral phosphines, each available in both A “H 10-14 8 THF, -45 °C N 1519
enantiomeric forms, were examined in combination with silver(l) 20h
acetate (Figure 1). The reaction was initially explored by reacting  enty Ar pyrrolidine yield? ces
methyl N-be_nzyl|den_eglycmate71_{, derived from benzaldehyde and 1 4-methoxyphenyl10) 15 93% 95%
methyl glycinate, with 1.5 equiv diert-butyl acrylate 8) with 3 2 4-bromophenyl11) 16 89% 95%
mol % catalyst loading. While the Trost ligands &nd 2) gave 3 4-cyanophenyl12) 17 92% 96%
low conversion at 4°C, the other four ligands3(6) showed 4 2-naphthyl 13) 18 89% 94%
5 2-tolyl (14) 19 95% 89%

excellent reactivity. With the exception of ligaiddthe diastereo-
selectivity was in general high. Strikingly, the P,N-ligand QUINAP aCatalyst loading: 3 mol % Isolated yield. Determined by HPLC.

(4) showed excellent levels of both diastereo- and enantioselectivity,

comparable to that reported by Zhang and co-workér$he 23 was obtained only in 60% ee (entry ®)In this case, reactions
catalyst loading can be reduced to 1 mol % without deleterious proceeding in toluene provided higher enantioselectivity than those
effect. Pyrrolidine9, in this case the enantiomer of that available in THF. In contrast, tert-butyl crotonate Z1) showed lower

by the Zhang catalyst, was obtained in 84% yield and 91% ee after reactivity, and pyrrolidin24 was obtained in 97% yield with 84%

reacting at—45 °C for 40 h (Figure 2). ee after reacting at20 °C for 85 h with 10 mol % catalyst loading
To explore the scope of the silver(l) acetate/ QUINAP-catalyzed (entry 2). This represents the first example of incorporating an alkyl
[3+2] azomethine ylide cycloaddition, we investigatedmino- group at the 3-position of pyrrolidine using catalytic asymmetric

esters {0—14) derived from aromatic aldehydes with a variety of azomethine ylide cycloadditions. On the other hatedt-butyl

steric and electronic properties (Table 1). Under these conditions, cinnamateZ2) showed poor diastereoselectivity (2:1), and the major

the reaction showed excellent levels of diastereoselectiv0( endo product pyrrolidin@5a was obtained in 81% ee while the

1) and enantioselectivity (9496% ee) regardless of the electronic  minor exo produc25b was obtained in 50% ee with a combined

property of the aromatic ring (entry-#), although the sterically  vyield of 62% (entry 3).

hindered iminoestet4 resulted in slightly lower enantioselectivity We also probed the silver(l) acetate/QUINAP-catalyzett4B

(89% ee, entry 5). azomethine cycloaddition with iminoesters derived from amino
We next examined the silver(l) acetate/QUINAP catalyst system esters other than glycinate. The tested substrates generate pyrroli-

with different dipolarophiles (Table 2). Dimethyl maleat20) dines with a quaternary center at the 2-position (Table 3).

reacted with iminoester even at—60 °C. However, pyrrolidine Pyrrolidine30was isolated in 98% yield and 80% ee after reacting

10174 = J. AM. CHEM. SOC. 2003, 125, 10174—10175 10.1021/ja036558z CCC: $25.00 © 2003 American Chemical Society
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Table 2. Exploration of the Reactivity of Dipolarophiles

i-ProNEt

O OMe
j/ AgOAc E»,, R‘_R
N R (9-QUINAP (4) d
Py + RJ\/E Ph*"\~ ""COOMe
Ph”H 7 2022  THF.temp H 2325
entry dipolarophile temp time  yield endo:exo? ee®
12 dimethyl —60°C 48h 88% 23 60%
maleate 20) >20:1
2b  tert-butyl —20°C 85h 97% (24 84%
crotonate 21) >20:1
3 tert-butyl —20°C 85h 629 (253 25b) 81%,
cinnamate 22) 2:1 509

aCatalyst loading: 3 mol %, solvent: toluerfeCatalyst loading: 10
mol %. ¢ Isolated yield 4 Determined by crudéH NMR spectra® Deter-
mined by HPLC.fca. 95% purity9 Combined yield of endo and exo
products." Enantioselectivity of the exo produ26b.

Table 3. Extending the Scope of the Silver(I)/QUINAP-Catalyzed

[3+2] Azomethine Ylide Cycloaddition?
Oy OMe ProNEt  'ByOOC,
j: o 5 AgOAc \ n
(S)-QUINAP (4)
N” R 7
L + A g, 200 PN coome
Ph” “H2629 8 »-20°C 30-33
entry R time yield® pyrrolidine eet

1 methyl 6) 24 h 98% 30 80%
2 iso-butyl (27) 48 h 77% 31 80%
3 benzyl @8) 48 h 93% 32 77%
4 3-indolylmethyl @9) 96 h 479% 33 81%

a Catalyst loading: 10 mol % Isolated yield ¢ Determined by HPLC.
485% conversion¢ 50% conversion.

1. H;NCH,COOMe 'BuooC,,

o
HC(OMS)Q, CHCl,
H )
/©/‘L Ny *MNN7 “COOMe
RO 2. Ho,C=CHCOOBu (8)

34 7 LPrNEY, AgOAC H 35
(S)-QUINAP (4), THF 79% yield over 3 steps
3. HF-py/pyridine/THF >20:1 endo:exo
then TMSOEt 90% ee

Pry JPr

Nas
R= @/\,SI ~ ?,. macrobeads, 166 nmol/bead

Figure 3. Silver(l)-catalyzed azomethine cycloaddition on macrobeads.

iminoester26'* derived from benzaldehyde and alanine-&0 °C
for 24 h with 10 mol % catalyst loading (entry 1). We also examined
the iminoesters derived from leucin27( entry 2), phenylalanine
(28, entry 3), and tryptophar®, entry 4). Good enantioselectivity
(77—81%) was observed in all cases, although iminoeg@and
29 reacted sluggishly. To the best of our knowledge, this is the
first general catalytic asymmetric 2] cycloaddition reaction to
generate quaternary centers at the 2-position of pyrrolidihes.

To show the applicability of this reaction on 56600 um
polystyrene “macrobead$§iyve loaded 4-hydroxybenzaldehyde onto

alkylsilyl-derivatized macrobeads and condensed the resulting

phenolic etheB4 with methyl glycinate. Reacting the macrobead-
bound iminoester witltert-butyl acrylate 8) using 10 mol % silver-
(I) acetate/§)-QUINAP at—45 °C for 40 h, followed by cleavage
with HF-py and TMSOEt quench, provided the pyrrolidia& in
79% vyield and 90% ee over three steps (Figure 3).

Both enantiomers of the new catalyst system are easily prepared
from commercially available reagents. They enable the enantio-
and diastereoselective introduction of up to four consecutive

stereogenic centers in thedf2] azomethine ylide cycloaddition,
including a previously unreported quaternary center on the pyrroli-
dine ring with good to excellent levels of selectivity. Its application
in a divergent DOS pathway leading to stereochemically diverse
alkaloids is underway.
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