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We report a procedure that should enhance the use of enantio-
selective 1,3-dipolar cycloadditions of azomethine ylides1 with
electronic-deficient olefins in the divergent pathways of diversity-
oriented synthesis (DOS).2 The underlying reaction is of consider-
able interest in DOS because its stereospecificity enables stereo-
chemical diversification of up to four tetrahedral centers on
pyrrolidine rings.

The biological importance of pyrrolidines has inspired the
development of diastereoselective [3+2] azomethine ylide cycload-
ditions using chiral auxiliaries3 and, recently by Zhang and co-
workers4 and Jørgensen and co-workers,5 of enantioselective
variants using chiral catalysts.6 Both Zhang’s silver(I)/xylyl-FAP
and Jørgensen’s zinc(II)/t-BuBOX systems give moderate to
excellent levels of stereoselectivity with imines derived from methyl
glycinate.7 We describe a new catalyst system that extends the scope
and selectivity of the azomethine ylide cycloaddition and is
compatible with reagents used in a one-bead/one-stock solution
technology platform for DOS.8

Focusing on the silver(I)-catalyzed enantioselective cycloaddition
developed by Zhang and co-workers, we aimed to identify a
commercially available and general catalyst system capable of
maximizing the number and directionality of pyrrolidine append-
ages. Six different chiral phosphines, each available in both
enantiomeric forms, were examined in combination with silver(I)
acetate (Figure 1). The reaction was initially explored by reacting
methylN-benzylideneglycinate (7), derived from benzaldehyde and
methyl glycinate, with 1.5 equiv oftert-butyl acrylate (8) with 3
mol % catalyst loading. While the Trost ligands (1 and 2) gave
low conversion at 4°C, the other four ligands (3-6) showed
excellent reactivity. With the exception of ligand3, the diastereo-
selectivity was in general high. Strikingly, the P,N-ligand QUINAP
(4) showed excellent levels of both diastereo- and enantioselectivity,
comparable to that reported by Zhang and co-workers.4,9 The
catalyst loading can be reduced to 1 mol % without deleterious
effect. Pyrrolidine9, in this case the enantiomer of that available
by the Zhang catalyst, was obtained in 84% yield and 91% ee after
reacting at-45 °C for 40 h (Figure 2).

To explore the scope of the silver(I) acetate/QUINAP-catalyzed
[3+2] azomethine ylide cycloaddition, we investigatedR-imino-
esters (10-14) derived from aromatic aldehydes with a variety of
steric and electronic properties (Table 1). Under these conditions,
the reaction showed excellent levels of diastereoselectivity (>20:
1) and enantioselectivity (94-96% ee) regardless of the electronic
property of the aromatic ring (entry 1-4), although the sterically
hindered iminoester14 resulted in slightly lower enantioselectivity
(89% ee, entry 5).

We next examined the silver(I) acetate/QUINAP catalyst system
with different dipolarophiles (Table 2). Dimethyl maleate (20)
reacted with iminoester7 even at-60 °C. However, pyrrolidine

23 was obtained only in 60% ee (entry 1).10 In this case, reactions
proceeding in toluene provided higher enantioselectivity than those
in THF. In contrast, tert-butyl crotonate (21) showed lower
reactivity, and pyrrolidine24 was obtained in 97% yield with 84%
ee after reacting at-20 °C for 85 h with 10 mol % catalyst loading
(entry 2). This represents the first example of incorporating an alkyl
group at the 3-position of pyrrolidine using catalytic asymmetric
azomethine ylide cycloadditions. On the other hand,tert-butyl
cinnamate (22) showed poor diastereoselectivity (2:1), and the major
endo product pyrrolidine25a was obtained in 81% ee while the
minor exo product25b was obtained in 50% ee with a combined
yield of 62% (entry 3).

We also probed the silver(I) acetate/QUINAP-catalyzed [3+2]
azomethine cycloaddition with iminoesters derived from amino
esters other than glycinate. The tested substrates generate pyrroli-
dines with a quaternary center at the 2-position (Table 3).
Pyrrolidine30was isolated in 98% yield and 80% ee after reacting

Figure 1. Chiral phosphine ligands screened for the azomethine ylide
cycloadditions.

Figure 2. Silver(I)/(S)-QUINAP-catalyzed azomethine ylide cycloaddition.

Table 1. Exploration of the Reactivity of the Aromatic Moietya

entry Ar pyrrolidine yieldb eec

1 4-methoxyphenyl (10) 15 93% 95%
2 4-bromophenyl (11) 16 89% 95%
3 4-cyanophenyl (12) 17 92% 96%
4 2-naphthyl (13) 18 89% 94%
5 2-tolyl (14) 19 95% 89%

a Catalyst loading: 3 mol %.b Isolated yield.c Determined by HPLC.
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iminoester2611 derived from benzaldehyde and alanine at-20 °C
for 24 h with 10 mol % catalyst loading (entry 1). We also examined
the iminoesters derived from leucine (27, entry 2), phenylalanine
(28, entry 3), and tryptophan (29, entry 4). Good enantioselectivity
(77-81%) was observed in all cases, although iminoesters27 and
29 reacted sluggishly. To the best of our knowledge, this is the
first general catalytic asymmetric [3+2] cycloaddition reaction to
generate quaternary centers at the 2-position of pyrrolidines.12

To show the applicability of this reaction on 500-600 µm
polystyrene “macrobeads”,8 we loaded 4-hydroxybenzaldehyde onto
alkylsilyl-derivatized macrobeads and condensed the resulting
phenolic ether34 with methyl glycinate. Reacting the macrobead-
bound iminoester withtert-butyl acrylate (8) using 10 mol % silver-
(I) acetate/(S)-QUINAP at-45 °C for 40 h, followed by cleavage
with HF-py and TMSOEt quench, provided the pyrrolidine35 in
79% yield and 90% ee over three steps (Figure 3).

Both enantiomers of the new catalyst system are easily prepared
from commercially available reagents. They enable the enantio-
and diastereoselective introduction of up to four consecutive

stereogenic centers in the [3+2] azomethine ylide cycloaddition,
including a previously unreported quaternary center on the pyrroli-
dine ring with good to excellent levels of selectivity. Its application
in a divergent DOS pathway leading to stereochemically diverse
alkaloids is underway.
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Table 2. Exploration of the Reactivity of Dipolarophiles

entry dipolarophile temp time yieldc endo:exod eee

1a dimethyl
maleate (20)

-60 °C 48 h 88% (23)
>20:1

60%

2b tert-butyl
crotonate (21)

-20 °C 85 h 97%f (24)
>20:1

84%

3b tert-butyl
cinnamate (22)

-20 °C 85 h 62%g (25a, 25b)
2:1

81%,
50%h

a Catalyst loading: 3 mol %, solvent: toluene.b Catalyst loading: 10
mol %. c Isolated yield.d Determined by crude1H NMR spectra.e Deter-
mined by HPLC. f ca. 95% purity.g Combined yield of endo and exo
products.h Enantioselectivity of the exo product25b.

Table 3. Extending the Scope of the Silver(I)/QUINAP-Catalyzed
[3+2] Azomethine Ylide Cycloadditiona

entry R time yieldb pyrrolidine eec

1 methyl (26) 24 h 98% 30 80%
2 iso-butyl (27) 48 h 77%d 31 80%
3 benzyl (28) 48 h 93% 32 77%
4 3-indolylmethyl (29) 96 h 47%e 33 81%

a Catalyst loading: 10 mol %.b Isolated yield.c Determined by HPLC.
d 85% conversion.e 50% conversion.

Figure 3. Silver(I)-catalyzed azomethine cycloaddition on macrobeads.
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